Area of Learning: MATHEMATICS — Pre-calculus

BIG IDEAS

Using **inverses** is the foundation of solving equations and can be extended to relationships between functions.

Understanding the characteristics of families of **functions** allows us to model and understand relationships and to build connections between classes of functions.

Transformations of shapes extend to functions and relations in all of their representations.

Learning Standards

<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students are expected to do the following:</td>
<td>Students are expected to know the following:</td>
</tr>
</tbody>
</table>
| **Reasoning and modelling** | • transformations of functions and relations
• exponential functions and equations
• geometric sequences and series
• logarithms: operations, functions, and equations
• polynomial functions and equations
• rational functions
• trigonometry: functions, equations, and identities |
| • Develop **thinking strategies** to solve puzzles and play games
• Explore, **analyze**, and apply mathematical ideas using **reason**, **technology**, and **other tools**
• **Estimate reasonably** and demonstrate **fluent, flexible, and strategic** thinking about number
• **Model** with mathematics in **situational contexts**
• **Think creatively** and with **curiosity and wonder** when exploring problems | |
| **Understanding and solving** | |
| • Develop, demonstrate, and apply conceptual understanding of mathematical ideas through play, story, **inquiry**, and problem solving
• **Visualize** to explore and illustrate mathematical concepts and relationships
• Apply **flexible and strategic approaches** to **solve problems**
• Solve problems with **persistence and a positive disposition**
• Engage in problem-solving experiences **connected** with place, story, cultural practices, and perspectives relevant to local First Peoples communities, the local community, and other cultures | |
<table>
<thead>
<tr>
<th>Curricular Competencies</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicating and representing</td>
<td></td>
</tr>
<tr>
<td>• Explain and justify mathematical ideas and decisions in many ways</td>
<td></td>
</tr>
<tr>
<td>• Represent mathematical ideas in concrete, pictorial, and symbolic forms</td>
<td></td>
</tr>
<tr>
<td>• Use mathematical vocabulary and language to contribute to discussions in the classroom</td>
<td></td>
</tr>
<tr>
<td>• Take risks when offering ideas in classroom discourse</td>
<td></td>
</tr>
<tr>
<td>Connecting and reflecting</td>
<td></td>
</tr>
<tr>
<td>• Reflect on mathematical thinking</td>
<td></td>
</tr>
<tr>
<td>• Connect mathematical concepts with each other, other areas, and personal interests</td>
<td></td>
</tr>
<tr>
<td>• Use mistakes as opportunities to advance learning</td>
<td></td>
</tr>
<tr>
<td>• Incorporate First Peoples worldviews, perspectives, knowledge, and practices to make connections with mathematical concepts</td>
<td></td>
</tr>
</tbody>
</table>
• Inverses:
 – *undo* the operations within an expression or function to reduce the expression to an identity (e.g., \(x = \)).

Sample questions to support inquiry with students:
 – How can the inverse help to solve an equation?
 – How is solving an equation related to identifying the specific input for a function, given a specific output?
 – How are exponential and logarithmic functions related?
 – How are the laws of exponents connected to the laws of logarithms?
 – What are some other examples of inversely related functions?
 – How are inverses related graphically, and why?
 – How is solving an exponential equation similar to solving a trigonometric equation?
 – How are inverse operations related to solving a polynomial equation by factoring?
 – What is the value of using trigonometric identities to find equivalent expressions?
 – Why do some equations have extraneous roots and other equations do not?

• Functions:

Sample questions to support inquiry with students:
 – How do we decide which kind of function to use to model a given problem?
 – What do functions and relations look like beyond the visible axes?
 – A set of data looks like a parabola, but it is not. What function could be used to model this data?
 – What does the number of zeros tell us about a function?
 – What connections do we see within the characteristics of a particular class of function?

• Transformations:

Sample questions to support inquiry with students:
 – How can we tell whether a transformation will have invariant points?
 – Under what circumstances will different transformations produce the same result?
 – How do graphical transformations affect the tables of values?
 – How does a transformation affect a point found at the origin as compared to a point on an axis or a point in one of the four quadrants?
 – How can a rational function of the form \(y = \frac{ax+b}{cx+d} \) be considered as a transformation of the reciprocal function \(y = \frac{1}{x} \)?
Curricular Competencies – Elaborations

- **thinking strategies:**
 - using reason to determine winning strategies
 - generalizing and extending

- **analyze:**
 - examine the structure of and connections between mathematical ideas (e.g., exponential functions to geometric sequences)

- **reason:**
 - inductive and deductive reasoning
 - predictions, generalizations, conclusions drawn from experiences (e.g., with puzzles, games, and coding)

- **technology:**
 - graphing technology, dynamic geometry, calculators, virtual manipulatives, concept-based apps
 - can be used to for a wide variety of purposes, including:
 - exploring and demonstrating mathematical relationships
 - organizing and displaying data
 - generating and testing inductive conjectures
 - mathematical modelling

- **other tools:**
 - manipulatives such as algebra tiles and other concrete materials

- **Estimate reasonably:**
 - be able to defend the reasonableness of an estimated value or a solution to a problem or equation (e.g., the zeros of a graphed polynomial function)

- **fluently, flexible and strategic thinking:**
 - includes:
 - using known facts and benchmarks, partitioning, applying whole number strategies to rational numbers and algebraic expressions
 - choosing from different ways to think of a number or operation (e.g., Which will be the most strategic or efficient?)

- **Model:**
 - use mathematical concepts and tools to solve problems and make decisions (e.g., in real-life and/or abstract scenarios)
 - take a complex, essentially non-mathematical scenario and figure out what mathematical concepts and tools are needed to make sense of it

- **situational contexts:**
 - including real-life scenarios and open-ended challenges that connect mathematics with everyday life

- **Think creatively:**
 - by being open to trying different strategies
 - refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music
Curricular Competencies – Elaborations

- curiosity and wonder:
 - asking questions to further understanding or to open other avenues of investigation
- inquiry:
 - includes structured, guided, and open inquiry
 - noticing and wondering
 - determining what is needed to make sense of and solve problems
- Visualize:
 - create and use mental images to support understanding
 - Visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams.
- flexible and strategic approaches:
 - deciding which mathematical tools to use to solve a problem
 - choosing an effective strategy to solve a problem (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play)
- solve problems:
 - interpret a situation to identify a problem
 - apply mathematics to solve the problem
 - analyze and evaluate the solution in terms of the initial context
 - repeat this cycle until a solution makes sense
- persistence and a positive disposition:
 - not giving up when facing a challenge
 - problem solving with vigour and determination
- connected:
 - through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
 - by posing and solving problems or asking questions about place, stories, and cultural practices
- Explain and justify:
 - use mathematical arguments to convince
 - includes anticipating consequences
- decisions:
 - Have students explore which of two scenarios they would choose and then defend their choice.
- many ways:
 - including oral, written, visual, use of technology
Curricular Competencies – Elaborations

• Represent:
 – using models, tables, graphs, words, numbers, symbols
 – connecting meanings among various representations

• discussions:
 – partner talks, small-group discussions, teacher-student conferences

• discourse:
 – is valuable for deepening understanding of concepts
 – can help clarify students’ thinking, even if they are not sure about an idea or have misconceptions

• Reflect:
 – share the mathematical thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions

• Connect mathematical concepts:
 – to develop a sense of how mathematics helps us understand ourselves and the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)

• mistakes:
 – range from calculation errors to misconceptions

• opportunities to advance learning:
 – by:
 ▪ analyzing errors to discover misunderstandings
 ▪ making adjustments in further attempts
 ▪ identifying not only mistakes but also parts of a solution that are correct

• Incorporate:
 – by:
 ▪ collaborating with Elders and knowledge keepers among local First Peoples
 ▪ exploring the First Peoples Principles of Learning (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
 ▪ making explicit connections with learning mathematics
 ▪ exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections

• knowledge:
 – local knowledge and cultural practices that are appropriate to share and that are non-appropriated

• practices:
 – Bishop’s cultural practices: counting, measuring, locating, designing, playing, explaining
 – Aboriginal Education Resources
 – Teaching Mathematics in a First Nations Context, FNESC
• transformations:
 – of graphs and equations of parent functions and relations (e.g., absolute value, radical, reciprocal, conics, exponential, logarithmic, trigonometric)
 – vertical and horizontal translations, stretches, and reflections
 – inverses: graphs and equations
 – extension:
 ▪ recognizing composed functions (e.g., $y =$)
 ▪ operations on functions
• exponential:
 – graphing, including transformations
 – solving equations with same base and with different bases, including base e
 – solving problems in situational contexts
• geometric:
 – common ratio, first term, general term
 – geometric sequences connecting to exponential functions
 – infinite geometric series
 – sigma notation
• logarithms:
 – applying laws of logarithms
 – evaluating with different bases
 – using common and natural logarithms
 – exploring inverse of exponential
 – graphing, including transformations
 – solving equations with same base and with different bases
 – solving problems in situational contexts
• polynomial:
 – factoring, including the factor theorem and the remainder theorem
 – graphing and the characteristics of a graph (e.g., degree, extrema, zeros, end-behaviour)
 – solving equations algebraically and graphically
• rational:
 – characteristics of graphs, including asymptotes, intercepts, point discontinuities, domain, end-behaviour
Content – Elaborations

<table>
<thead>
<tr>
<th>MATHEMATICS – Pre-calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 12</td>
</tr>
</tbody>
</table>

- **trigonometry:**
 - examining angles in standard position in both radians and degrees
 - exploring unit circle, reference and coterminal angles, special angles
 - graphing primary trigonometric functions, including transformations and characteristics
 - solving first- and second-degree equations (over restricted domains and all real numbers)
 - solving problems in situational contexts
 - using identities to reduce complexity in expressions and solve equations (e.g., Pythagorean, quotient, double angle, reciprocal, sum and difference)