DRAFT
DRAFT

DRAFT
DRAFT

[image: BC Logo Min of Ed]Area of Learning: MATHEMATICS — Computer Science	Grade 11
	
BIG IDEAS
	Decomposition helps us solve difficult problems by managing complexity.
	
	Algorithms are essential in solving problems computationally.
	
	Programming is a tool that allows us to implement computational thinking.
	
	Solving problems is a creative process.



Learning Standards
	Curricular Competencies
	Content

	Students are expected to do the following:
Reasoning and modelling
Develop flexible thinking to analyze and create algorithms
Explore, analyze, and apply mathematical ideas and computer science concepts using reason, technology, and other tools
Model with mathematics in situational contexts 
Think creatively and with curiosity and wonder when exploring problems
Understanding and solving
Develop, demonstrate, and apply conceptual understanding through experimentation, inquiry, and problem solving
Visualize to explore and illustrate computer science concepts 
and relationships
Apply flexible and strategic approaches to solve problems 
Solve problems with persistence and a positive disposition 
Engage in problem-solving experiences connected with place, story, cultural practices, and perspectives relevant to local First Peoples communities, the local community, and other cultures
	Students are expected to know the following:
ways to represent basic data types
basic programming concepts
variable scope
ways to construct and evaluate logical statements
use of control flow to manipulate program execution
development of algorithms to solve problems in multiple ways
techniques for operations on and searching of arrays and lists
problem decomposition through modularity
uses of computing for financial analysis 
ways to model mathematical problems



[image: BC Logo Min of Ed]Area of Learning: MATHEMATICS — Computer Science	Grade 11
	
Learning Standards (continued)
	Curricular Competencies
	Content

	Communicating and representing
Explain and justify mathematical ideas and decisions in many ways
Represent computer science ideas in concrete, pictorial, symbolic, and pseudocode forms
Use computer science and mathematical vocabulary and language to contribute to discussions in the classroom
Take risks when offering ideas in classroom discourse
Connecting and reflecting
Reflect on mathematical and computational thinking
Connect mathematical and computer science concepts with each other, other areas, and personal interests
Use mistakes as opportunities to advance learning
Incorporate First Peoples worldviews, perspectives, knowledge, and practices to make connections with computer science concepts
	










[bookmark: _GoBack]












	
	MATHEMATICS – Computer Science 
Big Ideas – Elaborations	Grade 11

	Decomposition:
dividing complex problems into parts that are easier to conceive, understand, and program
Sample questions to support inquiry with students:
How do we break down a problem into several smaller, simpler pieces?
How do we know if a problem should be decomposed further?
Is there a better way to break a problem into smaller pieces and reuse code?
Algorithms:
sets of rules or instructions that precisely define a sequence of operations 
Sample questions to support inquiry with students:
How does acting out a solution help us to develop an algorithm?
How is an algorithm formulated?
What makes one algorithm better than another algorithm?
How do we know that our algorithm is correct?
Can all problems be solved by a series of predefined steps?
computational thinking:
a thought process that uses pattern recognition and decomposition to describe an algorithm in a way that a computer can execute
Sample questions to support inquiry with students:
How do we decide which programming language to use in solving a specific problem?
Why is code readability important? 
What factors affect code readability?
How much source code documentation is enough?
Are there patterns in the problem that can be generalized?
How do we recognize patterns that can be translated into rules?
Solving problems:
Sample questions to support inquiry with students:
How many different ways can this problem be solved?
How do we approach solving a problem in different ways?
Without knowing a solution, how do we start to solve a problem?





		MATHEMATICS – Computer Science 
Curricular Competencies – Elaborations	Grade 11

	flexible thinking:
understanding that different algorithms can be used to solve the same problem
analyze:
examine the structure of and connections between mathematical and computer science ideas (e.g., demonstrating the connection between theoretical and experimental probability through simulation)
reason:
inductive and deductive reasoning 
predictions, generalizations, conclusions drawn from experiences (e.g., with coding)
technology:
graphing technology, dynamic geometry, calculators, virtual manipulatives, concept-based apps
can be used for a wide variety of purposes, including:
· exploring and demonstrating mathematical relationships
· organizing and displaying data
· generating and testing inductive conjectures
· mathematical modelling
other tools
integrated development environments (IDE)
third-party libraries
visual code comparison tools to view code differences (e.g., Meld)
Model:
use mathematical concepts and tools to solve problems and make decisions (e.g., in real-life and/or abstract scenarios)
take a complex, essentially non-mathematical scenario and figure out what mathematical concepts and tools are needed to make 
sense of it
situational contexts:
including real-life scenarios and open-ended challenges that connect mathematics with everyday life
Think creatively:
by being open to trying different strategies
refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music
curiosity and wonder:
asking questions to further understanding or to open other avenues of investigation

inquiry:
includes structured, guided, and open inquiry
noticing and wondering
determining what is needed to make sense of and solve problems
Visualize:
visualize data structures pictorially
use flow charts
use code visualization tools or websites (e.g., http://pythontutor.com/)
flexible and strategic approaches:
using different algorithms to solve the same problem
designing algorithms that solve a class of problems rather than a single problem
deciding which programming patterns to use to solve a problem
choosing an effective strategy to solve a problem (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play)
solve problems:
interpret a situation to identify a problem
apply mathematics to solve the problem
analyze and evaluate the solution in terms of the initial context 
repeat this cycle until a solution makes sense
persistence and a positive disposition:
not giving up when facing a challenge
problem solving with vigour and determination
connected:
through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
by posing and solving problems or asking questions about place, stories, and cultural practices
through cryptography (e.g., Navajo Code Talkers from WWII)
Explain and justify:
use mathematical arguments to convince
includes anticipating consequences
decisions:
Have students explore which of two scenarios they would choose and then defend their choice.
many ways:
including oral, written, pictures, use of technology
communicating effectively according to what is being communicated and to whom
Represent:
using models, tables, flow charts, words, numbers, symbols
connecting meanings among various representations
using concrete materials and dynamic interactive technology
discussions: 
partner talks, small-group discussions, teacher-student conferences 
discourse:
is valuable for deepening understanding of concepts
can help clarify students’ thinking, even if they are not sure about an idea or have misconceptions
Reflect:
share the mathematical and computational thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions
Connect mathematical and computer science concepts:
to develop a sense of how computer science helps us understand the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)
mistakes: 
include syntax, semantic, run-time, and logic errors
opportunities to advance learning:
by:
· analyzing errors to discover misunderstandings 
· making adjustments in further attempts (e.g., debugging)
· identifying not only mistakes but also parts of a solution that are correct
Incorporate:
by:
· collaborating with Elders and knowledge keepers among local First Peoples 
· exploring the First Peoples Principles of Learning (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
· making explicit connections with learning mathematics
· exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections
knowledge:
local knowledge and cultural practices that are appropriate to share and that are non-appropriated
practices:
Bishop’s cultural practices: counting, measuring, locating, designing, playing, explaining
Aboriginal Education Resources
Teaching Mathematics in a First Nations Context, FNESC 









		MATHEMATICS – Computer Science 
Content – Elaborations	Grade 11

	basic data types:
number systems (e.g., binary, hexadecimal)
strings, integers, characters, floating point
basic programming concepts:
variables, constants, mathematical operations, input/output, generating random numbers
scope:
local versus global
logical statements:
logical operators (AND, OR, NOT)
relational operators (<, >, <=, >=, ==, !=, or <>) 
logical equivalences (e.g., De Morgan’s laws), simplification of logical statements, truth tables
control flow:
decision structures (e.g., if-then-else)
loops (e.g., for, while, nested loops)
development of algorithms:
step-wise refinement, pseudocode or flowcharts, translating between pseudocode and code and vice versa
operations:
append, remove, insert, delete
searching:
searching algorithms (e.g., linear and binary searches)
modularity:
use of methods/functions to reduce complexity, reuse code, and use function parameters 
return values
financial analysis:
time value of money, appreciation/depreciation, mortgage amortization
modify the variables of a financial scenario to run a “what-if” analysis on them (e.g., compare different monthly payments, term lengths, interest rates)
mathematical problems:
estimate theoretical probability through simulation
represent finite sequences and series
solve a system of linear equations, exponential growth/decay
solve a polynomial equation
calculate statistical values such as frequency, central tendencies, standard deviation of large data set
compute greatest common factor/least common multiples



June 2018	www.curriculum.gov.bc.ca	© Province of British Columbia	•	3
image2.emf









image1.emf









